ViaNFT
Destaques

Os riscos da IA e a necessidade de segurança no uso diário

A turbulência na OpenAI, fabricante do ChatGPT, encerrada pelo conselho de administração  demitindo o famoso CEO Sam Altman  em 17 de novembro de 2023 e  recontratando-o apenas quatro dias depois, colocou em destaque a segurança da inteligência artificial e as preocupações sobre o rápido desenvolvimento de inteligência artificial geral, ou AGI. AGI é vagamente definida como  inteligência de nível humano em uma série de tarefas.

O conselho da OpenAI afirmou que  a demissão de Altman foi por falta de franqueza, mas a especulação centrou-se em uma divergência entre Altman e os membros do conselho sobre preocupações com o notável crescimento da OpenAI – produtos como ChatGPT e Dall-E adquiriram  centenas de milhões de usuários em todo o mundo  –  prejudicou a capacidade da empresa  de se concentrar nos  riscos catastróficos  representados pela AGI.

O objetivo da OpenAI de desenvolver AGI tornou-se entrelaçado com a ideia de  a IA adquirir capacidades superinteligentes  e a necessidade de proteção contra o uso indevido ou desonesto da tecnologia. Mas, por enquanto, a AGI e os riscos que a acompanham são especulativos. Enquanto isso, formas de IA específicas para tarefas são muito reais, se espalharam e muitas vezes passam despercebidas.

Como  pesquisador de sistemas de informação e IA responsável , estudo como esses algoritmos cotidianos funcionam – e como eles podem prejudicar as pessoas.

IA é difundida

A IA desempenha um papel visível na vida diária de muitas pessoas, desde o reconhecimento facial que desbloqueia seu telefone até o reconhecimento de fala que alimenta seu assistente digital. Ele também desempenha funções das quais você pode estar vagamente ciente – por exemplo, moldar suas mídias sociais e sessões de compras on-line, orientar suas escolhas de exibição de vídeos e  combiná-lo com um motorista  em um serviço de compartilhamento de caronas.

A IA também afeta sua vida de maneiras que podem passar completamente despercebidas. Se você está se candidatando a um emprego,  muitos empregadores usam IA no processo de contratação . Seus chefes podem estar usando isso para identificar funcionários  que provavelmente pedirão demissão. Se você estiver solicitando um empréstimo, é provável que seu banco esteja usando IA para decidir se deve concedê-lo. Se você estiver sendo tratado por uma condição médica, seus profissionais de saúde poderão usá-lo para  avaliar suas imagens médicas. E se você conhece alguém preso no sistema de justiça criminal, a IA pode muito bem desempenhar um papel na  determinação do curso de sua vida.

Danos Algorítmicos

Muitos dos sistemas de IA que passam despercebidos têm preconceitos que podem causar danos. Por exemplo, os métodos de aprendizado de máquina utilizam  lógica indutiva, que começa com um conjunto de premissas, para generalizar padrões a partir de dados de treinamento. Descobriu-se que uma  ferramenta de triagem de currículos baseada em aprendizado de máquina era tendenciosa contra as mulheres  porque os dados de treinamento refletiam práticas anteriores, quando a maioria dos currículos era enviada por homens.

A utilização de métodos preditivos em áreas que vão desde os cuidados de saúde até ao bem-estar infantil pode apresentar  preconceitos, tais como preconceitos de coorte,  que levam a avaliações de risco desiguais entre diferentes grupos da sociedade. Mesmo quando as práticas legais proíbem a discriminação com base em atributos como raça e gênero – por exemplo, no crédito ao consumo –  a discriminação por procuração ainda pode ocorrer. Isto acontece quando os modelos algorítmicos de tomada de decisão não utilizam características legalmente protegidas, como a raça, e em vez disso utilizam características altamente correlacionadas ou ligadas à característica legalmente protegida, como a vizinhança. Estudos descobriram que mutuários negros e latinos com risco equivalente  pagam taxas de juros significativamente mais altas  em empréstimos garantidos por empresas patrocinadas pelo governo e segurados pela Autoridade Federal de Habitação do que mutuários brancos.

Outra forma de preconceito ocorre quando os tomadores de decisão usam um algoritmo de forma diferente daquela pretendida pelos projetistas do algoritmo. Num exemplo bem conhecido, uma rede neural aprendeu a  associar a asma a um menor risco de morte por pneumonia. Isto ocorreu porque os asmáticos com pneumonia recebem tradicionalmente um tratamento mais agressivo que reduz o risco de mortalidade em comparação com a população em geral. No entanto, se o  resultado de tal rede neural  for usado na alocação de leitos hospitalares, então aqueles com asma e internados com pneumonia seriam perigosamente despriorizados.

Os preconceitos dos algoritmos também podem resultar de ciclos complexos de feedback social. Por exemplo, ao prever a reincidência, as autoridades tentam prever quais as pessoas condenadas por crimes que têm  probabilidade de cometer crimes novamente. Mas os dados usados ​​para treinar algoritmos preditivos são, na verdade, sobre quem tem probabilidade de ser preso novamente.

Segurança de IA aqui e agora

A recente  ordem executiva da administração Biden  e  os esforços de aplicação por parte de agências federais  como a Comissão Federal de Comércio são os primeiros passos para reconhecer e proteger contra danos algorítmicos.

E embora  os grandes modelos de linguagem, como o GPT-3, que alimenta o ChatGPT, e  os grandes modelos multimodais de linguagem, como o GPT-4, sejam passos no caminho em direção à inteligência artificial geral, eles também são algoritmos que as pessoas estão usando cada vez mais na escola, no trabalho e vida cotidiana. É importante considerar os preconceitos que resultam do uso generalizado de grandes modelos de linguagem.

Por exemplo, estes modelos podem apresentar preconceitos resultantes de  estereótipos negativos envolvendo gênero, raça ou religião, bem como preconceitos na representação de  minorias e pessoas com deficiência. Como esses modelos demonstram a capacidade de superar  os humanos em testes como o exame da ordem, acredito que eles exigem um maior escrutínio para garantir que o trabalho aumentado pela IA esteja em conformidade com os  padrões de transparência, precisão e crédito de origem  e  que as partes interessadas tenham autoridade  para fazer cumprir tais padrões.

Em última análise, quem ganha e quem perde com a implantação em larga escala da IA ​​pode não estar relacionado com a superinteligência desonesta, mas com a compreensão de quem é vulnerável quando a tomada de decisões algorítmicas é omnipresente.

Este artigo foi publicado originalmente por  The C onversation  sob uma licença Creative Commons e traduzido de NFTNow. Leia o artigo original  de   Anjana Susarla, professora de Sistemas de Informação da Michigan State University.

Related posts

Qual é a diferença entre os contratos ERC721 e ERC1155?

vianft
2 anos atrás

A DAO Play4change está mudando vidas através dos games

vianft
2 anos atrás

Pudgy Penguins Lil Pudgys agora podem viajar através de blockchains

vianft
2 anos atrás
Sair da versão mobile